Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Internet Research ; 32(4):1378-1400, 2022.
Artigo em Inglês | ProQuest Central | ID: covidwho-1909120

RESUMO

Purpose>Social shopping platforms have flourished by using multiple social shopping features, yet little is known about how the combination of these features affects purchase intention, particularly in terms of the product itself. The purpose of the paper is to draw on the concept of social shopping feature richness, adopting a formative approach on the survey used, and endeavors to reveal the concept's impact on consumers' buying intention from a product perspective.Design/methodology/approach>Building on mental accounting and signaling theories, a theoretical model is proposed and empirically evaluated with 356 samples collected using a questionnaire survey.Findings>The results suggest that social shopping feature richness promotes consumers' consumption by providing information signals to satisfy acquisition utility and transaction utility. Specifically, social shopping feature richness enhances perceived product quality, while decreasing negative perceptions regarding price. Moreover, perceived product quality and perceived price significantly influence buying intention through the mechanism of perceived value.Originality/value>The authors' study highlights the role of the combination of functionally diverse social shopping features on product sales for social shopping platforms.

2.
Signal Transduct Target Ther ; 6(1): 378, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: covidwho-1500450

RESUMO

The current COVID-19 pandemic has heavily burdened the global public health system and may keep simmering for years. The frequent emergence of immune escape variants have spurred the search for prophylactic vaccines and therapeutic antibodies that confer broad protection against SARS-CoV-2 variants. Here we show that the bivalency of an affinity maturated fully human single-domain antibody (n3113.1-Fc) exhibits exquisite neutralizing potency against SARS-CoV-2 pseudovirus, and confers effective prophylactic and therapeutic protection against authentic SARS-CoV-2 in the host cell receptor angiotensin-converting enzyme 2 (ACE2) humanized mice. The crystal structure of n3113 in complex with the receptor-binding domain (RBD) of SARS-CoV-2, combined with the cryo-EM structures of n3113 and spike ecto-domain, reveals that n3113 binds to the side surface of up-state RBD with no competition with ACE2. The binding of n3113 to this novel epitope stabilizes spike in up-state conformations but inhibits SARS-CoV-2 S mediated membrane fusion, expanding our recognition of neutralization by antibodies against SARS-CoV-2. Binding assay and pseudovirus neutralization assay show no evasion of recently prevalent SARS-CoV-2 lineages, including Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), and Delta (B.1.617.2) for n3113.1-Fc with Y58L mutation, demonstrating the potential of n3113.1-Fc (Y58L) as a promising candidate for clinical development to treat COVID-19.


Assuntos
Enzima de Conversão de Angiotensina 2/química , Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , COVID-19 , SARS-CoV-2/química , Anticorpos de Cadeia Única/química , Enzima de Conversão de Angiotensina 2/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/uso terapêutico , Cristalografia por Raios X , Epitopos/química , Epitopos/imunologia , Humanos , Camundongos , SARS-CoV-2/imunologia , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/uso terapêutico
3.
Nat Commun ; 12(1): 4635, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: covidwho-1333940

RESUMO

SARS-CoV-2, the causative agent of COVID-191, features a receptor-binding domain (RBD) for binding to the host cell ACE2 protein1-6. Neutralizing antibodies that block RBD-ACE2 interaction are candidates for the development of targeted therapeutics7-17. Llama-derived single-domain antibodies (nanobodies, ~15 kDa) offer advantages in bioavailability, amenability, and production and storage owing to their small sizes and high stability. Here, we report the rapid selection of 99 synthetic nanobodies (sybodies) against RBD by in vitro selection using three libraries. The best sybody, MR3 binds to RBD with high affinity (KD = 1.0 nM) and displays high neutralization activity against SARS-CoV-2 pseudoviruses (IC50 = 0.42 µg mL-1). Structural, biochemical, and biological characterization suggests a common neutralizing mechanism, in which the RBD-ACE2 interaction is competitively inhibited by sybodies. Various forms of sybodies with improved potency have been generated by structure-based design, biparatopic construction, and divalent engineering. Two divalent forms of MR3 protect hamsters from clinical signs after live virus challenge and a single dose of the Fc-fusion construct of MR3 reduces viral RNA load by 6 Log10. Our results pave the way for the development of therapeutic nanobodies against COVID-19 and present a strategy for rapid development of targeted medical interventions during an outbreak.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Anticorpos de Domínio Único/imunologia , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Anticorpos Neutralizantes/farmacologia , Anticorpos Neutralizantes/ultraestrutura , Anticorpos Antivirais/farmacologia , Anticorpos Antivirais/ultraestrutura , Sítios de Ligação/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Microscopia Crioeletrônica , Cristalografia por Raios X , Feminino , Humanos , Espectrometria de Massas/métodos , Mesocricetus , Camundongos Endogâmicos C57BL , Testes de Neutralização , Ligação Proteica/efeitos dos fármacos , Receptores Virais/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiologia , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/metabolismo
4.
Med (N Y) ; 2(1): 99-112.e7, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: covidwho-1036371

RESUMO

BACKGROUND: The ongoing coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a global public health concern due to relatively easy person-to-person transmission and the current lack of effective antiviral therapy. However, the exact molecular mechanisms of SARS-CoV-2 pathogenesis remain largely unknown. METHODS: Genome-wide screening was used to establish intraviral and viral-host interactomes. Quantitative proteomics was used to investigate the peripheral blood mononuclear cell (PBMC) proteome signature in COVID-19. FINDINGS: We elucidated 286 host proteins targeted by SARS-CoV-2 and >350 host proteins that are significantly perturbed in COVID-19-derived PBMCs. This signature in severe COVID-19 PBMCs reveals a significant upregulation of cellular proteins related to neutrophil activation and blood coagulation, as well as a downregulation of proteins mediating T cell receptor signaling. From the interactome, we further identified that non-structural protein 10 interacts with NF-κB-repressing factor (NKRF) to facilitate interleukin-8 (IL-8) induction, which potentially contributes to IL-8-mediated chemotaxis of neutrophils and the overexuberant host inflammatory response observed in COVID-19 patients. CONCLUSIONS: Our study not only presents a systematic examination of SARS-CoV-2-induced perturbation of host targets and cellular networks but it also reveals insights into the mechanisms by which SARS-CoV-2 triggers cytokine storms, representing a powerful resource in the pursuit of therapeutic interventions. FUNDING: National Key Research and Development Project of China, National Natural Science Foundation of China, National Science and Technology Major Project, Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, Shanghai Science and Technology Commission, Shanghai Municipal Health Commission, Shanghai Municipal Key Clinical Specialty, Innovative Research Team of High-level Local Universities in Shanghai, Interdisciplinary Program of Shanghai Jiao Tong University, SII Challenge Fund for COVID-19 Research, Chinese Academy of Sciences (CAS) Large Research Infrastructure of Maintenance and Remolding Project, and Chinese Academy of Sciences Key Technology Talent Program.


Assuntos
COVID-19 , SARS-CoV-2 , China/epidemiologia , Humanos , Interleucina-8 , Leucócitos Mononucleares , Proteômica , Fatores de Virulência
5.
Glycobiology ; 31(1): 69-80, 2021 01 09.
Artigo em Inglês | MEDLINE | ID: covidwho-592209

RESUMO

Coronaviruses hijack human enzymes to assemble the sugar coat on their spike glycoproteins. The mechanisms by which human antibodies may recognize the antigenic viral peptide epitopes hidden by the sugar coat are unknown. Glycosylation by insect cells differs from the native form produced in human cells, but insect cell-derived influenza vaccines have been approved by the US Food and Drug Administration. In this study, we analyzed recombinant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein secreted from BTI-Tn-5B1-4 insect cells, by trypsin and chymotrypsin digestion followed by mass spectrometry analysis. We acquired tandem mass spectrometry (MS/MS) spectrums for glycopeptides of all 22 predicted N-glycosylated sites. We further analyzed the surface accessibility of spike proteins according to cryogenic electron microscopy and homolog-modeled structures and available antibodies that bind to SARS-CoV-1. All 22 N-glycosylated sites of SARS-CoV-2 are modified by high-mannose N-glycans. MS/MS fragmentation clearly established the glycopeptide identities. Electron densities of glycans cover most of the spike receptor-binding domain of SARS-CoV-2, except YQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQ, similar to a region FSPDGKPCTPPALNCYWPLNDYGFYTTTGIGYQ in SARS-CoV-1. Other surface-exposed domains include those located on central helix, connecting region, heptad repeats and N-terminal domain. Because the majority of antibody paratopes bind to the peptide portion with or without sugar modification, we propose a snake-catching model for predicted paratopes: a minimal length of peptide is first clamped by a paratope and sugar modifications close to the peptide either strengthen or do not hinder the binding.


Assuntos
Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19/terapia , Glicopeptídeos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Motivos de Aminoácidos , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/uso terapêutico , COVID-19/imunologia , Vacinas contra COVID-19/química , Vacinas contra COVID-19/imunologia , Glicopeptídeos/química , Glicopeptídeos/imunologia , Humanos , Imunização Passiva , SARS-CoV-2/química , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Soroterapia para COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA